Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex.
نویسندگان
چکیده
Cerebral cortical neurons are known to be produced from both apical progenitors in the ventricular zone (VZ) and basal (intermediate) progenitors in the subventricular zone (SVZ). On the other hand, we have shown that many SVZ cells assume multipolar morphology and show a characteristic movement termed "multipolar migration." The relationship between multipolar cells and basal progenitors in the SVZ has yet to be investigated. Herein, we followed postmitotic cells generated in the VZ and found that they stayed for more than 10 h in the VZ after becoming postmitotic and then accumulated in the lower part of the SVZ (multipolar cell accumulation zone: MAZ) as multipolar cells (slowly exiting population: SEP), whereas basal progenitors rapidly migrated into the SVZ or intermediate zone (IZ) (rapidly exiting population: REP) with somal translocation morphology. Although REP reached the SVZ/IZ earlier than the SEP, REP stayed within in the SVZ/IZ, whereas SEP moved steadily and entered the CP prior to the REP. We also observed SEP to eventually differentiate into pyramidal neurons in layers II/III. This study provides in vivo evidence of differences in migration modes between postmitotic cells generated from apical progenitors and basal progenitors.
منابع مشابه
Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex.
The size of brain regions depends on the balance between proliferation and differentiation. During development of the mouse cerebral cortex, ventricular zone (VZ) progenitors, neuroepithelial and radial glial cells, enlarge the progenitor pool by proliferative divisions, while basal progenitors located in the subventricular zone (SVZ) mostly divide in a differentiative mode generating two neuro...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملDifferences and similarities between human and chimpanzee neural progenitors during cerebral cortex development
Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and s...
متن کاملIntermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex.
The developing cerebral cortex contains apical and basal types of neurogenic progenitor cells. Here, we investigated the cellular properties and neurogenic output of basal progenitors, also called intermediate neuronal progenitors (INPs). We found that basal mitoses expressing transcription factor Tbr2 (an INP marker) were present throughout corticogenesis, from embryonic day 10.5 through birth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2009